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1 Description of Submissions

High-level feature extraction

� A COL base6 T2 6 (R6): train on TRECVID2007 development data, multi-parame ter models with
average fusion across several modalities (referred to astarget baseline)

� A COL xd5 T5 5 (R5): train on TRECVID2007 development data and TRECVID200 5 development
data using feature replication, multi-parameter models with average fusion across several modalities
(referred to as xd or replication)

� A COL bcrf base4 T7 4 (R4): trained with contextual scores from TRECVID2005 based models
(using columbia374) and with TRECVID2007 development (referred to as BCRF) then average-fused
with target baseline

� A COL bcrf xd base3 T14 3 (R3): average fusion ofBCRF, target baseline, and xd replication

� A COL bcrf xd base col3742 T16 2 (R2): average fusion ofBCRF, target baseline, xd replication,
and columbia374

� A COL best of all1 T17 1 (R1): choose best-performing classi�er for each concept over a validation
data subset from all above submissions

� col374 : not submitted, but publicly available model (see [16]) setcovering 374 concepts in the LSCOM
ontology and trained on only 60% of the TRECVID2005 development data (referred to assource models)



Abstract

One di�culty in the HLF task this year was changing the applie d domain from news video to foreign
documentary videos. Classi�ers trained in prior years perf ormed poorly if naively applied, and classi�ers
trained on the 2007 data alone may su�er from too few positive training samples. This year we address
this new fundamental problem how to e�ciently and e�ectivel y adapt models learned from an old
domain to a signi�cantly di�erent one. Investigation of thi s topic complements very well the scalability
issue discussed in TRECVID 2006 how to leverage the resourceof a large concept detector pool (e.g.,
Columbia 374) to improve accuracy of individual detectors.

We developed and tested a new cross-domain SVM (CDSVM) algorithm for adapting previously
learned support vectors from one domain to help classi�cati on in another domain. Performance gain is
obtained with almost no additional computational cost. Als o, we conduct a comprehensive comparative
study of the state-of-the-art SVM-based cross-domain learning methods.

To further understand the underlying contributing factors , we propose an intuitive selection criterion
to determine which cross-domain learning method to use for each concept. Such a prediction mechanism
is important since there are a multitude of promising method s for adapting old models to new domains,
and thus judicious selection is a key to applying the right me thod under the right context (e.g., size of
training data in new/old domains, variation of content betw een two domains, etc). Although there is no
single method that universally outperforms other options, with adequate prediction mechanisms, we will
be able to apply the right adaptation approach in di�erent co nditions, and demonstrate 22% performance
improvement for mid-frequency or rare concepts.

2 Introduction

There is a common issue for machine learning problems: the amount of available test data is large and
growing, but the amount of labeled data is often �xed and quite small. Video data, labeled for semantic
concept classi�cation is no exception. For example, in high-level concept classi�cation tasks (TRECVID [14]),
new corpora may be added annually from unseen sources like foreign news channels or audio-visual archives.
Ideally, one desires the same low error rates when reapplying models derived from previous source domainDs

to a new, unseen target domainD t , often referred to as domain adaptation or cross-domain learning. Recently
several di�erent approaches has been proposed toward this direction in the machine learning society [4, 5, 17].
The high-level feature extraction task of TRECVID2007 provides a large amount of cross-domain data sets
for evaluating and comparing these methods. In TRECVID2007, we try to tackle this challenging issue and
make contributions in two folds. First, a new Cross-Domain SVM (CDSVM ) algorithm is developed for
adapting previously learned support vectors from sourceDs to help detect concepts in target D t . Better
precision can be obtained with almost no additional computational cost. Second, a comprehensive summary
and comparative study of the state-of-the-art SVM-based cross-domain learning algorithms is given. By
treating the TRECVID2007 data set as the target domain D t and treating the TRECVID2005 data set as
the source domainDs , these algorithms are evaluated over the latest large-scale TRECVID benchmark data.
Finally, a simple but e�ective criterion is proposed to determine if and which cross-domain method should
be used.

The rest of this paper is organized as follows. Section 3 gives an overview of many state-of-the-art SVM-
based cross-domain learning methods, ordered in decreasing computational cost. Section 3.3.3 introduces
our CDSVM algorithm. We also review the BCRF approach which explores the inter-concept relations. In
section 4 we discuss our submissions for TRECVID2007 high-level feature extraction task and in section 5
we compare the performance of many cross-domain learning algorithms. Finally, in section 6 we provide
experimental conclusions and next steps for research.



3 Approach Overview

The cross-domain learning problem can be summarized as follows. Let D t denote the target data set, which
consists of two subsets: the labeled subsetD t

l and the unlabeled subsetD t
u . Let (x i ; yi ) denote a data point

where x i is a d dimensional feature vector andyi is the corresponding class label. In this work we only look
at the binary classi�cation problem, i.e., yi = f +1 ; � 1g. In addition to D t , we have asource data setDs

whose distribution is di�erent from but related to that of D t . A binary classi�er f s(x) has already been
trained over this source data setDs . Our goal is to learn a classi�er f (x) to classify the unlabeled target
subsetD t

u .
As D t and Ds have di�erent distributions, f s(x) will not perform well for classifying D t

u . Conversely, we
can train a new classi�er f t (x) based onD t

l alone, but when the number of training samplesjD t
l j is small,

f t (x) may not give robust performance. SinceDs is related to D t , utilizing information from source Ds to
help classify targetD t

u should yield better performance. This is fundamental the motivation of cross-domain
learning. In this section, we brie
y summarize and discuss many state-of-the-art SVM-based cross-domain
learning algorithms.

3.1 Standard SVM Applied in New Domain

Without cross-domain learning, the standard Support Vector Machine (SVM ) [15] classi�er can be learned
based on the labeled subsetD t

l to classify the unlabeled setD t
u . Given a data vector x, SVMs determine

the corresponding label by the sign of a linear decision function f (x) = w T x + b. For learning non-linear
classi�cation boundaries, a kernel mapping� is introduced to project data vector x into a high-dimensional
feature space� (x), and the corresponding class label is now given by the sign of f (x) = w T � (x)+ b. The
primary goal of an SVM is to �nd an optimal separating hyperpl ane that gives a low generalization error
while separating the positive and negative training samples. This hyperplane is determined by giving the
largest margin of separation between di�erent classes, i.e. by solving the following problem:

min
w

1
2

jjw jj 2
2 + C

X N t
l

i =1
� i (1)

s:t: y i w
T � (x i )+ b� 1� � i ; � i � 0; 8(x i ; yi ) 2 D t

l

where � i is the penalizing variable added to each data vectorx i ; C determines how much error an SVM can
tolerate. One very simple way to perform cross-domain learning is to learn new models over all possible
samples, calledCombined SVM in this paper. The primary motivation for this method is that when the
size of data in target domain is small, the target model will bene�t from a high count of training samples
present in Ds and should therefore be much more stable than a model trainedon D t alone. However, there
is a large time cost for learning with this method due to the increased number of training samples fromjD t j
to jD s j+ jD t j.

3.2 Transductive Localized SVM (LSVM)

To decrease generalization error in classifying unseen data D t
u in the target domain, transductive SVM

methods [5, 9] incorporate knowledge about the new test datainto the SVM optimization process so that
the learned SVM can accurately classify test data.

The Localized SVM (LSVM ) tries to learn one classi�er for each test sample based on its local neighbor-
hood. Given a test data vectorx̂ j , we �nd its neighborhood in the labeled training set D t

l based on similarity
� (x̂ j ; x i ), x i 2 D t

l : � (x̂ j ; x i ) = exp
�
� � jj x̂ j � x i jj2

2

�
. � controls the size of the neighborhood, i.e. the larger

the � , the less in
uence each distant data point has. An optimal local hyper-plane is learned from test data
neighborhoods by optimizing the following function:



min
w

1
2

jjw jj2
2 + C

X N t
l

i =1
� (x̂ j ; x i )� i (2)

s:t: yi w T � (x i )+ b� 1� � i ; � i � 0; 8(x i ; yi ) 2 D t
l

As the result, the classi�cation of a test sample only depends on the support vectors in its local neigh-
borhood.

Transductive SVM approaches can be directly used for cross-domain learning by using D t
l [ D s to take

the place of D t
l in Eqn.(2). Their major drawback is the computational cost, especially for large-scale data

sets.

3.3 Cross-domain Adaptation Approaches

In the cross-domain learning problem, the source data setDs and the target data set D t are highly related.
The following cross-domain adaptation approaches investigate how to use source data to help classify target
data.

3.3.1 Feature Replication

Feature replication combines all samples from bothDs and D t , and tries to learn generalities between the
two data sets by replicating parts of the original feature vector, x i for di�erent domains. This method has
been shown e�ective for text document classi�cation over multiple domains [8]. Speci�cally, we �rst zero-pad
the dimensionality of x i from d to d(N � 1) where N is the total number of adaptation domains, and in our
experiments N =2 (one source and one target). Next we transform all samplesfrom all domains as:

x̂s
i =

2

4
x i

0
x i

3

5 ; x i 2D s x̂ t
i =

2

4
x i

x i

0

3

5 ; x i 2D t

During learning, a model will be constructed that takes advantage of all possible training samples. Alike the
combined method in section 3.1, this is most helpful whenDs can provide missing data forD t . However,
unlike the combined method, learned SVs from the same domainas a test unlabeled sample (source-source
or target-target) are given more preference by the the kernelized function of � (x̂s ; x̂s) or � (x̂ t ; x̂ t ) compared
to � (x̂ t ; x̂s) because of the zero-padding operation. Unfortunately, due to the increase in dimensionality,
there is also a large increase in model complexity and computation time during learning and evaluation of
replication models.

3.3.2 Adaptive SVM

In [17], the Adaptive SVM (A-SVM ) approach tries to adapt the a classi�er f s(x), learned from Ds to
classify the unseen target data setD t

u . In this approach, the �nal discriminant function is the ave rage of
f s(x) and the new \delta function" 4 f (x)= w T � (x)+ b learned from target setD t

l , i.e.,

f (x) = f s(x) + w T � (x) + b (3)

where 4 f (x) aims at complementing f s(x) based on targetD t
l . The basic idea of A-SVM is to learn a new

decision boundary that is close to the original decision boundary (given by f s(x)) as well as separating the
target data.

One potential problem with this approach is the constraint that the new decision boundary should not be
deviated far from the source classi�er. This is generally a reasonable assumption whenD t is only incremental
data for Ds , i.e. D t has similar distribution with Ds . When D t has a di�erent distribution but comparable
size than Ds , such regularization constraint is problematic.



3.3.3 Cross-Domain SVM

In a recent work [10], we proposed a new method calledCross-Domain SVM (CDSVM ). Our goal is to
learn a new decision boundary based on the target data setD t

l which can separate the unknown data set
D t

u , with the help of Ds . Let Vs = f (v s
1; ys

1); : : : ; (v s
M ; ys

M )g denote the support vectors which determine the
decision boundary andf s(x) be the discriminant function already learned from the source domain. Learned
support vectors carry all the information about f s(x); if we can correctly classify these support vectors, we
can correctly classify the remaining samples fromDs except for some misclassi�ed training samples. Thus
our goal is simpli�ed and analogous to learning an optimal decision boundary based on the target data set
D t

l which can separate the unknown data setD t
u with the help of Vs.

Similar to the idea of LSVM, the impact of source data Vs can be constrained by neighborhoods. The
rationale behind this constraint is that if a support vector v s

i falls in the neighborhood of target data D t , it
tends to have a distribution similar to D t and can be used to help classifyD t . Thus the new learned decision
boundary needs to take into consideration the classi�cation of this support vector. Let � (v s

j ; D t
l ) denote the

similarity measurement between source support vectorv s
j and the labeled target data setD t

l , our optimal
decision boundary can be obtained by solving the following optimization problem:

min
w

1
2

jjw jj2
2 + C

X jD t
l j

i =1
� i + C

X M

j =1
� (v s

j ; D t
l )� j (4)

s:t: yi (w T � (x i ) � b) � 1� � i ; � i � 0; 8(x i ; yi ) 2D t
l

ys
j (w T � (v s

j ) � b) � 1� � j ; � j � 0; 8(v s
j ; ys

j ) 2V s

In CDSVM optimization, the old support vectors learned from Ds are adapted based on the new training
data D t

l . The adapted support vectors are combined with the new training data to learn a new classi�er.
For support vectors from the source data setDs , weight � reduces the in
uence of those support vectors

that are located far away from the new training samples in target data set D t
l .

Also similar to A-SVM [17], we want to preserve the discriminant property of the new decision boundary
over the old source dataDs , but our technique has a distinctive advantage: we do not enforce the regu-
larization constraint that the new decision boundary is similar to the old one. Instead, based on the idea
of localization, the discriminant property is only addressed over important source data samples that have
similar distributions to the target data. Speci�cally, � takes the form of a Gaussian function:

� (v s
j ; D t

l ) =
1

jD t
l j

X

(x i ;y i )2D t
l

exp
�

� � jj v s
j � x i jj2

2

	
(5)

� controls the degrading speed of the importance of support vectors from Vs. The larger the � , the less
in
uence of support vectors in Vs that are far away from D t

l . When � is very large, a new decision boundary
will be learned solely based on new training data fromD t

l . Also, when � is very small, the support vectors
from Vs and the target data set D t

l are treated equally and the algorithm is equivalent to training an SVM
classi�er over D t

l [ V s together. This is virtually equivalent to the combined SVM d escribed in section 3.1.
With such control, the proposed method is general and 
exible, capturing conventional methods as special
cases. The control parameter,� , can be optimized in practice via systematic validation experiments.

3.4 BCRF Contextual Model

Another important branch of cross-domain learning method is the prior model. By applying the already
trained models f s from source domainDs to the target domain D t , we can get a set of concept detection
con�dence scores for each target datax i 2D l . That is, each target samplex i can be represented by a set of
concept scoresf f s(x i )g. These concept scores form a concept feature space and basedon which classi�ers
f t can be trained usingD t

l for classifying D t
u . In this prior model, the source modelsf s are used as prior

knowledge to generate concept score feature vectors for learning new target classi�ers.



In this work, we generalize our prior work on boosted conditional random �elds (BCRF) [11] for cross-
domain learning under this prior framework. BCRF aims to incorporate the inter-concept relationships
(modeled by a conditional random �eld) to help detect indivi dual concepts. The two-stage framework of
BCRF makes it natural to generalize for cross-domain learning. In the �rst stage, detection scores of a large
scale concept ontology (374 LSCOM) are generated from source modelf s learned with source dataDs . Then
in the second stage, these detection scores are used as new feature inputs, and through graph learning the
target models f t are learned using labeled target dataD t

l by considering the inter-conceptual relationships.
Speci�cally, the joint conditional posterior probability of class labels is iteratively learned by the well-known
real AdaBoost algorithm. SVM classi�ers are used as elementary learners for each iteration.

The BCRF algorithm was a stand alone submission for the TRECVID2006 high-level feature extraction
task [2]. In TRECVID2006, BCRF was used as a cross-concept learning method where both BCRF and
baseline detectors were trained over TRECVID2005 development data set (referred to as source data in this
paper). Also, in TRECVID2006 the BCRF algorithm was applied to 16 (out of 39) concepts automatically
selected by a concept prediction criterion by taking into account both the strength of inter-conceptual
relationships and the robustness of each baseline detector, i.e., a concept is predicted to be amenable to
contextual fusion when its correlated concepts show strongdetection power and its own detection accuracy
is relatively weak [11]. In TRECVID2006, only 4 out of the 16 predicted concepts were evaluated by NIST,
and 3 of these 4 concepts:car, meeting and military-personnel, show signi�cant improvements of more than
20%, with the 4th concept showing no performance change (seeFig.(1) for details). The advantage of BCRF
was further demonstrated by the evaluation over a separate validation data set, where prediction was very
accurate { 13 out of the 16 predicted concepts showed signi�cant performance gains while the remaining
3 did not show performance di�erence. Such signi�cant gainsand the high level of prediction accuracy
are very encouraging, and con�rm the e�ectiveness of context-based concept detection and the prediction
method across data from di�erent years. It also addresses the open issue concerning the inconsistent e�ects
of contextual concept fusion found in many previous works.
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Figure 1: Performance of BCRF in TRECVID 2006 high-level feature extraction submission.

3.5 Multi-parameter Model Training

In training the baseline model over the new data set from TRECVID07, we experimented with a simple
idea of fusing SVMs of multiple parameter sets, rather than choosing a single best parameter set. Grid
search using n-fold cross validation has shown to be a reasonable choice for parameter selection under the
assumption that the test data set is not too much di�erent fro m the training data set. However from
our empirical study, the single parameter selected by cross-validation usually is not the best parameter for
detecting many concepts over test data. To alleviate this parameter selection problem, in TRECVID2007



we adopt a multi parameter setting model. Instead of training one model by a single parameter setting
from cross-validation, we train multiple models with multi ple parameter settings, and then fuse these models
as �nal detectors. Speci�cally, in our work, the RBF kernel ( K (x i ; x j ) = exp f� 
 jj x i � x j jj2

2g) is used and
there are two parameters to select for SVM construction,
 and C (Eqn.(1)). The procedure of the multi
parameter setting model is as follows:

1. Empirically choose 10 di�erent initial 
 = f 2� 8

d ; 2� 6

d ; 2� 4

d ; 2� 2

d ; 20

d ; 22

d ; 24

d ; 26

d ; 28

d g and 4 di�erent initial
C = f 24; 26; 28; 210g, where d is the dimension of the feature.

2. Through separate cross-validation comparisons, we havefound (
 = 20

d , C =2 4) is a good initial choice.

3. Choose a set of parameter settings around the initial parameter setting. We chose 5 neighbors ofC
and 
 and exhaustively pair these neighbors in the
 � C space, i.e. 25 �nal parameter settings.

4. Using a the 25 parameter settings, train 25 SVM classi�ers.

5. Fuse 25 SVM classi�ers to generate the �nal ensemble classi�er. Note the same parameter sets are
used for every concept. Parameter search is no longer used.

The appropriate fusion strategy for multiple classi�ers into an ensemble classi�er is also an open issue,
and in general it is not trivial to choose a fusion technique that works best for all concepts [6]. There
are many possible fusion techniques, e.g. average, maximum, minimum, product, inverse entropy, inverse
variance [6], and ensemble selection [7], and from the empirical study of many previous works the average
fusion strategy usually generates robust performance. Thus for baseline models for the target domain, we
simply utilize the average fusion method. To remove the in
uence of di�erent scales of con�dence scores
from di�erent classi�ers, the classi�cation scores of di�e rent SVMs are normalized �rst before average fusion
by a sigmoid function: f̂ (x)= 1

1+exp f� f (x )g .

3.6 Time and Model Complexity

Time and model complexity are also important factors to consider when choosing a cross-domain approach.
Table 1 summarizes the data used for training and and an estimate for complexity and time usage.

Method Train Ds Train D t Complexity Additional Training Time
apply source all none jD t

l j 0x
retrain target none all jD s

l j 1x
A-SVM SVs all jVs j +jD t

lj�jD
t
l j 1.25x

CDSVM SVs all jVs j +jD t
lj�jD

t
l j 1.25x

LSVM regions all jD s
l j � jD t

u j 2x
standard combined all all jD s

l j + jD t
l j 3x

replication all all 3 � (jD s
l j + jD t

l j) 9x

Table 1: Description of training data, complexity, and trai ning time estimates for discussed approaches,
assumingjD s j > jD t j. In TRECVID2007, jD s j � 40k samples andjD t j � 20k.

Training on either source or target data alone is directly related to the amount of data in these domains
(i.e. jD s

l j and jD t
l j), de�ned here asOs and Ot , respectively. Similarly, a combined model uses both source

and target data (i.e. jD s
l j + jD t

l j) in training so it's complexity is the combination of these complexities as well
Os + Ot . Other methods that seek to combine the di�erent domains have di�erent complexities depending
on their approach.

Let Ots represent the time complexity of training on combined source and target data. The LSVM
approach needs to train jD t

u j classi�ers, one for each test sample. Thus the complexity ofLSVM is about
jD t

u j � O ts . In [4] the iterative training process for TSVM needs POts complexity where P is the number



of iterations. Approximation methods can be used to speed upthe learning process by sacri�cing accuracy
[4, 5], but how to balance speed and accuracy is also an open issue.

Replicated SVM training complexity is approximately a scalar of the combined approach. However,
because it replicates features during training, its training scale to 2� (N � 1) where N is the number of
domains involved. In our experiment, only two domains were involved, but we are not aware of a limitation
on the number of domains that could be included. One unique attribute about this particular model is that
it hopes to have high performance acrossall included domains whereas the other approaches emphasize the
target domain alone.

The CDSVM approach has relatively small time complexity. Let Ot denote the time complexity of
training a new SVM based on labeled targetD t

l . Since the number of support vectors from source domain,
jVs j, is generally much smaller than the number of training samples in target domain, i.e., jVs j << jD t

l j,
CDSVM trains an SVM classi�er with jVsj+jD t

lj�jD
t
lj training samples, and this computational complexity is

very close toOt .
As for BCRF, two SVM classi�ers are trained during each iteration (see [11] for more details). So the

time complexity of BCRF is about 2TOt where T is the number of iterations.

4 Analysis of TRECVID2007 Submissions

In this work, we evaluated several algorithms over di�erent parts of the TRECVID data set [1]. The source
data set, Ds , is a 41847 keyframe subset derived from the development setof TRECVID2005, containing
61901 keyframes extracted from 108 hours of international broadcast news. The target data set,D t , is the
TRECVID2007 data set containing 21532 keyframes extractedfrom 60 hours of news magazine, science news,
documentaries, and educational programming videos. We further partition the target set into training and
validation partitions with 17520 and 4012 keyframes respectively; in this partitioning process, we attempted
to maintain equal coverage of broadcasts to avoid sample bias. The unlabeled target data,D t

u , is the entire
TRECVID2007 test data set, for a total of 22084 keyframes from about 58 hours of broadcast video.

The TRECVID2007 data set is quite di�erent from TRECVID2005 data set in program structure and
production value, but they have similar semantic concepts of interest. All the keyframes are manually
labeled for 36 semantic concepts, originally de�ned by LSCOM-lite [12], and in this work we train one-vs.-all
classi�ers.

For each keyframe, 3 types of standard low-level visual features are extracted: grid-color moment (225
dim), Gabor texture (48 dim) and edge direction histogram (73 dim). Such features, though relatively simple,
have been shown e�ective in detecting scenes and large objects, and considered as part of standard features
in high-level concept detection [1].

For all di�erent algorithms, the RBF kernel, K (x i ; x j ) = exp f 
 jjx i � x j jj2
2g), is used for all SVM classi�ers.

To avoid the di�culty of choosing one optimal parameter sett ing for the SVM classi�er, a multi-parameter
setting method is used. The basic idea is to train multiple SVM classi�ers based on di�erent parameter
settings and then combine these multiple SVMs into an ensemble classi�er. Through our empirical study,
such a multi-parameter setting method usually provides robustly good performance. More details will be
included in our detailed technique report.

4.1 Submission De�nitions and Overall Performance

With six o�cial submissions to compare, we chose to illustrate di�erences between several approaches that
leveraged training on the source domain (TRECVID2005) versus those with training on the target domain
(TRECVID2007). These o�cial submission names and their purpose are de�ned in are de�ned in section 1
(repeated below). Fig. 2 illustrates the overall ranking and the average precision (AP) of our submissions
and the order of the di�erent submissions with respect to each other. Average precision is the precision



evaluated at every relevant point in a ranked list averaged over all points; it is used here as a standard means
of comparison for the TRECVID data set.

� A COL base6 T2 6 (R6): train on TRECVID2007 development data, multi-parame ter models with
average fusion across several modalities (referred to astarget baseline)

� A COL xd5 T5 5 (R5): train on TRECVID2007 development data and TRECVID200 5 development
data using feature replication, multi-parameter models with average fusion across several modalities
(referred to as xd or replication)

� A COL bcrf base4 T7 4 (R4): trained with contextual scores from TRECVID2005 based models
(using columbia374) and with TRECVID2007 development (referred to as BCRF) then average-fused
with target baseline

� A COL bcrf xd base3 T14 3 (R3): average fusion ofBCRF, target baseline, and xd replication

� A COL bcrf xd base col3742 T16 2 (R2): average fusion ofBCRF, target baseline, xd replication,
and columbia374

� A COL best of all1 T17 1 (R1): choose best-performing classi�er for each concept over a validation
data subset from all above submissions

� col374 : not submitted, but publicly available model (see [16]) setcovering 374 concepts in the LSCOM
ontology and trained on only 60% of the TRECVID2005 development data (referred to assource models)
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Figure 2: Standing among all submissions; our submissions are blue and all other group submissions are red.

We would like to note that although several methods are proposed in this paper, we only submitted a
score set for the replication (or xd) approach. We provide a one-on-one analysis of the di�erentproposed
approaches in a supplemental empirical evaluation described in section 5.

Ordered by decreasing MIAP, or mean inferred average precision over all evaluated concepts, Fig. 2 also
depicts a few trends among submission MIAP from which we can make empirical observations.

� R2 is the only run that directly fuses results from source model. The fact that it was ranked lowest
among these runs indicates that indeed there is signi�cant data di�erence between 2005 and 2007
domains, and thus blind application of source model is not a viable approach.



� When we compare the MIAP over 20 concepts, the speci�c cross-domain method (R5, feature replica-
tion) submitted is not as good as the target model (R6). However, as we will show in the next section,
the cross-domain approach still shows noticeable gains forsome speci�c concepts. Additionally, in a
supplemental evaluation (section 5), other cross-domain approaches discussed in section 3.3 outperform
the feature-replication cross-domain method we submittedin the o�cial run.

� Similar to our �ndings in TRECVID2006, adding the BCRF model to utilize inter-concept context
relations improves the overall performance (R4 is better than R6). Combination of context fusion
(BCRF) and target models achieves the highest performance in our submitted runs.

� Selecting the best method by using a reserved data subset (R1) did not prove to be worthwhile based
on the MIAP. This unreliable performance prediction could be due to the di�erence between the
development and test data sets, and/or the limited size of the validation subset.

4.2 Speci�c Analysis by Concepts

Our TRECVID2007 submissions are brie
y described in section 1 and results are shown in Fig. 2. A
more speci�c analysis by concept is provided in Fig. 3. From these results, we can make a few important
observations.

� The cross-domain (xd) approach (R5) provides bene�ts for some concepts that aren't available via
target training (R6) in maps, weather, and chart.

� The cross-domain approach achieved performance comparable to retraining entirely new target models
(MIAP or R5 and R6 di�ers by only 0.0045).

� BCRF, a contextual prior approach, provides complementary information during score fusion even
though its individual performance may be weaker due to training on source model scores (R4 vs. R6).

While we did not create o�cial submissions for all cross-domain approaches described in section 3.3.3, the
observed performance indicates that a cross-domain approach to adapting models from prior data is both
appropriate and necessary. We have conducted comparative studies of di�erent cross-domain approaches
using a reserved subset of development data of TRECVID2007.Details of such empirical studies will be
described in the next section. Additionally, we found that contextual models are very useful even if they
are constructed using models trained only on the source domain, as is the case of BCRF training on source
domain concept scores and target domain labels, which is also known as a prior approach (see section 3.4).
We also veri�ed that a fusion of di�erent approaches (i.e. BCRF and multi-parameter) increased average
performance over the evaluated concepts. The next section of this paper detail additional experiments
performed over the TRECVID2007 data set to better analyze the strengths and weaknesses of di�erent
cross-domain approaches.

5 Additional Empirical Cross-domain Analysis

In our supplemental empirical studies, we used the same source, Ds , and target, D t data set de�nitions
presented in section 4, with one small exception: for the unlabeled target data set,D t

u , we use a subset of
the o�cial TRECVID2007 development data (the validation su bset described in 4) instead of the o�cial
TRECVID2007 testing data. This choice was deliberate because the development data was fully labeled for
all 36 evaluated semantic concepts, which avoids questionsabout full recall depth.

To guarantee model uniformity, for of the evaluated approaches, we train models with the same set
of features (a concatenated 346-dim long feature vector to represent each keyframe) and a single set of
parameter settings (an RBF kernel using
 = 1

d or 0:0029 for our experiments andC =1, which are suggested
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Figure 3: Inferred average precision of approaches versus concepts evaluated on the TRECVID2007 test set.

as default parameters in [3]). We used LIBSVM [3] for all SVM computations with a modi�cation to include
sample independent weights, as described in section 3.3.3.

5.1 Comparison of Methods

Comparing AP alone, the CDSVM method proposed in this work generally out-performs all other methods,
as shown by Fig. 4. This is signi�cant not only because of the higher performance, but also because
of lower computation complexity compared to the standard combined, replication, and LSVM methods.
Improvements over the target model and the combined model are particularly encouraging and con�rm
our assumption that a judicious usage of data from the sourcedomain is critical for robust target domain
models. Not all of the source samples are needed and inclusion of only source data support vectors is not
overwhelming because each vector's in
uence is adequatelycustomized.

5.2 Important Attributes of Approaches

While CDSVM has better average performance, further analysis demonstrates that it is not always the best
choice for individual classes. Fig.4 gives the per-conceptAP and is ordered such that frequency of positively
labeled samples (as computed fromD t

l ) decreases from left to right. However, there are several trends seen
in Fig. 4 that can be exploited to aide in the selection of the best approach on a per-concept basis. As
hinted in the �gure's concept ordering, categorizing the di�erent concepts based on their positive frequency,
D t

l , provides a good preliminary grouping of best cross-domainchoices. Positive frequency can be easily
computed for either the source or target domain without any additional computation. We choose positive
frequency because is directly related to the di�culty of a concept learning task, particularly in the case
of discrete learning mechanisms, like SVMS. Another criterion available for a set of models trained only
on source data,jD s j, is the individual concept's performance relative to other concepts in a lexicon (here,
the Columbia 374 [16]). While this metric is sensitive to the number of concepts in the lexicon, it is only
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Figure 4: Average precision over a subset ofD t
l versus concept class for cross-domain methods; ordered

by increasing frequency of positiveD t
l samples. Shaded concepts indicate the best method has a relative

increase of at least 5% over all other methods.

needed as a coarse indicator for how well the model performedin the source domain. The use of these
easily computable statistics is a subtle but important requirement that allows approach selection without
any additional model learning or evaluation. In the next section, we describe a set of heuristic rules that
can optimally select the best approach for each of the 36 evaluated concepts.

5.3 Predicting the Best Cross-domain Approach

Intuitively, CDSVM will perform well when we have enough positive training samples in both Ds and D t .
It is highly probable that support vectors from Ds are complementary to D t , which can be combined with
D t to get a good classi�er. However, when training samples fromboth Ds and D t are few, positive samples
from both source and target will distribute sparsely in the feature space and it is more likely that the source
support vectors are far from the target data. Thus, not much information can be obtained from Ds and we
should not use cross-domain learning. Alternatively, with only a few positive target training samples and
a very reliable source classi�erf s(x), the source data may provide important missing data for the target
domain. In such cases, CDSVM will not perform well because target data is unreliable and instead the
feature replication method, discussed in section 3.3.1 generally works well.

Based on the above analysis and empirical experimental results in Fig.4, a method predicting criterion
is developed in Fig.5. With these prediction rules, we can increase our cross-domain learning mean AP
from 0.263 to 0.271, but one must cautiously interpret thesemean AP numbers. Though the overall mean
AP improvement is relatively small (about 3%), the improvements over the rare concepts is actually very
signi�cant. If we compute the MAP over only concepts with lower frequencies, the improvement is as large
as 22%.

6 Conclusions And Future Work

In this work we tackle the important cross-domain learning issue of adapting models trained and applied in
di�erent domains. We develop a novel and e�ective method for learning image classi�cation models that work
across domains even when the distributions are di�erent andwhen training data is small. We also perform a
systematic comparison of various cross-domain learning methods over the diverse and large-scale video data



if (f req (D t
+ ) >T t

1) [ (f req (Ds
+ ) >T s) then

Selected model = CDSVM
else if AP (Ds) > MAP (Ds) then

Selected model = Feature Replication
else if (f req (D t

+ ) <T t
2 ) \ (f req (Ds

+ ) <T s) then
Selected model = SVM over Target Labeled SetD t

l

else
Selected model = CDSVM

end if

Figure 5: Method selection criterion. f req (D+ ) is the frequency of positive samples in a data domain;
AP (Ds) and and MAP (Ds) are the AP and MAP computed for source models on a validationset of source
domain data; T t

1 , T t
2 and T s are thresholds empirically determined via experiments.

set { the TRECVID2007 and TRECVID2005 data sets. By analyzing the advantages and disadvantages of
di�erent cross-domain learning algorithms, a simple but e�ective ruleset is proposed to determine when and
which cross-domain learning methods should be used.

In terms of performance evaluation, on average, signi�cantgains can be obtained by cross-domain learning
algorithms over both the TRECVID2007 validation set and TRE CVID2007 test set. This demonstrates the
advantage of cross-domain learning for helping concept detection. As discussed in our empirical experiments,
when our evaluation data set is very similar to the target training data set, CDSVM can signi�cantly
improve the detection performance by leveraging source information to help classify target data, with almost
no additional time complexity. On the other hand, when the evaluation data is not so consistent with
target training data, CDSVM may su�er from over-�tting and i nstead the feature replication approach that
considers source and target data equally can learn a more balanced model.

Having con�rmed the e�ectiveness of cross-domain learningmethods, additional research can be done in
three main directions:

� Distribution similarity : Motivated by the kernelized sample weighting employed in CDSVM (Eqn.
4) and the regularized constraints in A-SVM 3, we plan to explore additional ways to compute dif-
ferences between domains. With a better way to determine di�erences, we could not only re�ne our
heuristic set of prediction rules but also explore new approaches that reduce the magnitude of required
new domain labels through user interaction or more a biased sample selection during training (similar
to CDSVM).

� Prediction re�nement : While the ruleset de�ned in 5 are adequate for this problem, we hope to
include di�erent metrics to re�ne this ruleset and eliminat e heuristic thresholds. Additionally a richer
macro-level, problem-driven prediction (as discussed above) can be added to the ruleset to adaptively
predict which cross-domain learning algorithm to use for di�erent evaluation data sets, based on the
similarity of the data distributions from target domain and evaluation data set. Our experiments in
section 5 demonstrate that even within the same domain, someapproaches may be more fragile than
others.

� Unlabaled adaptation : In this work we analyzed cross-domain approaches for labeled data only; the
36 concepts we considered had already been labeled in a massive group-driven e�ort by [13]. However,
if we are to leverage the full strength of the LSCOM ontology [12], we must also look at approaches
to adapt unlabeled concepts. While there has been some work in the speech community for this topic,
there are many issues that are unique to the video and multimedia �eld.
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